
Unit 4.

Advanced Shell Programming

Advanced Shell Programming
Unix has a lot of filter commands like awk, grep, sed, spell, and wc.

A filter takes input from one command, does some processing, and gives output.

A filter is a Unix command that does some manipulation of the text of a file.

Two of the most powerful and popular Unix filters are the sed and awk commands.

Both of these commands are extremely powerful and complex.

Splitting Files
As the name suggests ‘split‘ command is used to split or break a file into the pieces in Linux and

UNIX systems. (i.e.: split command in Unix is used to split a large file into smaller files.)

Whenever we split a large file with split command then split output file’s default size is 1000 lines

and its default prefix would be ‘x’.

The splitting can be done on various criteria: on the basis of number of lines, or the number of

output files or the byte count, etc.

Filter commands for splitting : head, tail, cut and split.

1. head :
The head command, as the name implies, print the top N number of data of the given input.

By default it prints the first 10 lines of the specified files.

If more than one file name is provided then data from each file is precedes by its file name.

If no FILE is specified, or when FILE is specified as a dash ("-"), head reads from standard

input.

syntax:

 head [option][filename(s)]

here option and argument is optional

• by default, head display top 10 line of a file.

• $ head f1 f2 f3

Example:

• $ head f1 f2 f3

= =>f1<= = #header of file1

……

…..

…..10 lines of f1….

 = =>f2<= = #header of file2

……

…..

…..10 lines of f3….

= =>f3<= = #header of file3

……

…..

…..10 lines of f1….

• $ head – #prints only 10 line from keyboard then $

• $ head -5c f1 f2 f3 # first 5character of each file

• $ head –n f1 # shows first n line of file

• $ head -1q f1 f2 f3

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

usage : ./if.sh pattern file

nidhi pts/1 Aug 26 02:29 (192.168.0.64)

• $ head -1 f1 f2 f3

==> f1 <==

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

==> f2 <==

usage : ./if.sh pattern file

==> f3 <==

neha pts/1 Aug 26 02:29 (192.168.0.64)

Options with this command

Tag Description

-c, --bytes=[-

]num

to print N bytes from each input file.

You can use the -c option to print the N number of bytes from the initial part of

file.

$ head -c 5 flavours.txt

Ubuntu

-n, --lines=[-

]num

To print N lines from each input file.

To view the first N number of lines, pass the file name as an argument with -n

option as shown below.

$ head -n 5 flavours.txt

Ubuntu

Debian

Redhat

Gentoo

Fedora core

-q, --quiet, --

silent

–quietPrevent printing of header information that contains file name

It is used if more than 1 file is given. Because of this command, data from each

file is not precedes by its file name.

Without using -q option

==> state.txt capital.txt <==

Hyderabad

Itanagar

Dispur

Patna

Raipur

Panaji

Gandhinagar

Chandigarh

Shimla

Srinagar

With using -q option

$ head -q state.txt capital.txt

Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

Goa

Gujarat

Haryana

Himachal Pradesh

Jammu and Kashmir

Hyderabad

Itanagar

Dispur

Patna

Raipur

Panaji

Gandhinagar

Chandigarh

Shimla

Srinagar

-v, --verbose

to print header information always.

By using this option, data from the specified file is always preceded by its file

name.

$ head -v state.txt

==> state.txt <==

Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

Goa

Gujarat

Haryana

Himachal Pradesh

Jammu and Kashmir

2. tail
The tail command, as the name implies, print the last N number of data of the given input.

By default it prints the last 10 lines of the specified files.

If more than one file name is provided then data from each file is precedes by its file name.

syntax:

 tail [option][filename(s)]

• by default display last 10 lines of the file

Example

• $ tail f1 f2 f3 #display last 10 lines with filename as header

• With – as file, it reads std. input until a user press <ctrl+d> and then display last 10

lines from input.

• $ tail -5c f1 #display last 5 characters

• $ tail -3 f1 # display last 3 lines of file f1

• $ tail –q f1 f2 f3 # not show header filename

• $tail +5 f1 #display lines from 5th to last line of file f1.

Options with tail command:

Short

Option

Long

Option
Option Description

-c –bytes to print last N bytes from each input file

-f –follow to print appended data as and when the file grows

-n –lines to print last N lines from each input file

–pid with -f, to terminate after PID dies

-q
–silent, –

quiet
to prevent printing of header information

–retry

to keep retrying to open a file even when it is not exist or becomes

inaccessible. Useful when it is used with -f

-s
–sleep-

interval
to sleep for N seconds between iterations

-v –verbose to print header information always

3. cut
Cut command in unix (or linux) is used to select sections of text from each line of files.

You can use the cut command to select fields or columns from a line by specifying a delimiter

or you can select a portion of text by specifying the range or characters.

Basically the cut command slices a line and extracts the text.

The cut command in UNIX is a command for cutting out the sections from each line of files

and writing the result to standard output.

It can be used to cut parts of a line by byte position, character and field.

Basically the cut command slices a line and extracts the text.

It is necessary to specify option with command otherwise it gives error.

If more than one file name is provided then data from each file is not precedes by its file

name.

syntax: cut OPTION... [FILE]...

OPTIONS:

Tag Description

-b BYTE-LIST

--bytes=BYTE-LIST

Print only the bytes in positions listed in BYTE-LIST. Tabs and

backspaces are treated like any other character; they take up 1

byte.

-c CHARACTER-LIST

--characters=CHARACTER-LIST

Print only characters in positions listed in CHARACTER-LIST. The

same as '-b' for now, but internationalization will change that. Tabs

and backspaces are treated like any other character; they take up 1

character.

-f FIELD-LIST

--fields=FIELD-LIST

Print only the fields listed in FIELD-LIST. Fields are separated by a

TAB character by default.

-d INPUT_DELIM_BYTE

--

delimiter=INPUT_DELIM_BYTE

For '-f', fields are separated in the input by the first character in

INPUT_DELIM_BYTE (default is TAB).

-n Do not split multi-byte characters (no-op for now).

-s For '-f', do not print lines that do not contain the field separator

--only-delimited character.

--output-

delimiter=OUTPUT_DELIM_STR

ING

For '-f', output fields are separated by OUTPUT_DELIM_STRING The

default is to use the input delimiter.

For most of the example, we’ll be using the following test file.

$ cat test.txt

cat command for file oriented operations.

cp command for copy files or directories.

ls command to list out files and directories with its attributes.

1. Select Column of Characters (-c)

To extract only a desired column from a file use -c option. The following example displays 2nd

character from each line of a file test.txt

$ cut -c2 test.txt

a

p

s

As seen above, the characters a, p, s are the second character from each line of the test.txt file.

2. Select Column of Characters using Range

Range of characters can also be extracted from a file by specifying start and end position

delimited with -. The following example extracts first 3 characters of each line from a file called

test.txt

$ cut -c1-3 test.txt

cat

cp

ls

3. Select Column of Characters using either Start or End Position

Either start position or end position can be passed to cut command with -c option.

The following specifies only the start position before the ‘-‘. This example extracts from 3rd

character to end of each line from test.txt file.

$ cut -c3- test.txt

t command for file oriented operations.

 command for copy files or directories.

 command to list out files and directories with its attributes.

The following specifies only the end position after the ‘-‘. This example extracts 8 characters

from the beginning of each line from test.txt file.

$ cut -c-8 test.txt

cat comm

cp comma

ls comma

The entire line would get printed when you don’t specify a number before or after the ‘-‘ as

shown below.

$ cut -c- test.txt

cat command for file oriented operations.

cp command for copy files or directories.

ls command to list out files and directories with its attributes.

4. Select a Specific Field from a File

Instead of selecting x number of characters, if you like to extract a whole field, you can combine

option -f and -d. The option -f specifies which field you want to extract, and the option -d

specifies what is the field delimiter that is used in the input file.

The following example displays only first field of each lines from /etc/passwd file using the field

delimiter : (colon). In this case, the 1st field is the username. The file

$ cut -d':' -f1 /etc/passwd

root

daemon

bin

sys

sync

games

bala

5. Select Multiple Fields from a File

You can also extract more than one fields from a file or stdout. Below example displays

username and home directory of users who has the login shell as “/bin/bash”.

$ grep "/bin/bash" /etc/passwd | cut -d':' -f1,6

root:/root

bala:/home/bala

To display the range of fields specify start field and end field as shown below. In this example,

we are selecting field 1 through 4, 6 and 7

$ grep "/bin/bash" /etc/passwd | cut -d':' -f1-4,6,7

root:x:0:0:/root:/bin/bash

bala:x:1000:1000:/home/bala:/bin/bash

6. Select Fields Only When a Line Contains the Delimiter

In our /etc/passwd example, if you pass a different delimiter other than : (colon), cut will just

display the whole line.

In the following example, we’ve specified the delimiter as | (pipe), and cut command simply

displays the whole line, even when it doesn’t find any line that has | (pipe) as delimiter.

$ grep "/bin/bash" /etc/passwd | cut -d'|' -f1

root:x:0:0:root:/root:/bin/bash

bala:x:1000:1000:bala,,,:/home/bala:/bin/bash

But, it is possible to filter and display only the lines that contains the specified delimiter using -s

option.

The following example doesn’t display any output, as the cut command didn’t find any lines

that has | (pipe) as delimiter in the /etc/passwd file.

$ grep "/bin/bash" /etc/passwd | cut -d'|' -s -f1

7. Select All Fields Except the Specified Fields

In order to complement the selection field list use option –complement.

The following example displays all the fields from /etc/passwd file except field 7

$ grep "/bin/bash" /etc/passwd | cut -d':' --complement -s -f7

root:x:0:0:root:/root

bala:x:1000:1000:bala,,,:/home/bala

8. Change Output Delimiter for Display

By default the output delimiter is same as input delimiter that we specify in the cut -d option.

To change the output delimiter use the option –output-delimiter as shown below. In this

example, the input delimiter is : (colon), but the output delimiter is # (hash).

$ grep "/bin/bash" /etc/passwd | cut -d':' -s -f1,6,7 --output-delimiter='#'

root#/root#/bin/bash

bala#/home/bala#/bin/bash

9. Change Output Delimiter to Newline

In this example, each and every field of the cut command output is displayed in a separate line.

We still used –output-delimiter, but the value is $’\n’ which indicates that we should add a

newline as the output delimiter.

$ grep bala /etc/passwd | cut -d':' -f1,6,7 --output-delimiter=$'\n'

bala

/home/bala

/bin/bash

4. split

split large files into a number of smaller files (i.e. Split a file into pieces.)
To split large files into smaller files in UNIX, use the split command.

At the Unix prompt, enter:

 Syntax : split [options] filename prefix

Replace filename with the name of the large file you wish to split.

Replace prefix with the name you wish to give the small output files.

You can exclude [options], or replace it with either of the following:

 -l linenumber

 -b bytes

If you use the -l (a lowercase L) option, replace linen umber with the number of lines you'd like

in each of the smaller files (the default is 1,000).

If you use the -b option, replace bytes with the number of bytes you'd

like in each of the smaller files.

The split command will give each output file it creates the name prefix with an extension tacked

to the end that indicates its order.

By default, the split command adds aa to the first output file, proceeding through the alphabet

to zz for subsequent files.

If you do not specify a prefix, most systems use x.

Options

Tag Description

-a, --suffix-length=N

 use suffixes of length N (default 2)

-b, --bytes=SIZE

 put SIZE bytes per output file

-C, --line-bytes=SIZE

 put at most SIZE bytes of lines per output file

-d, --numeric-suffixes

 use numeric suffixes instead of alphabetic

-l, --lines=NUMBER

 put NUMBER lines per output file

--verbose

 print a diagnostic to standard error just before each output file is

opened

--help display this help and exit

--version

 output version information and exit

Examples

• In this simple example, assume myfile is 3,000 lines long:

 split myfile

This will output three 1000-line files: xaa, xab, and xac.

• Working on the same file, this next example is more complex:

 split -l 500 myfile segment

This will output six 500-line

files: segmentaa, segmentab, segmentac, segmentad, segmentae, and segmentaf.

• Finally, assume myfile is a 160KB file:

 split -b 40k myfile segment

This will output four 40KB files: segmentaa, segmentab, segmentac, and segmentad.

Sorting and merging files
1. Sort
SORT command is used to sort a file, arranging the records in a particular order.

By default, the sort command sorts file assuming the contents are ASCII.

Using options in sort command, it can also be used to sort numerically.

� SORT command sorts the contents of a text file, line by line.

� sort is a standard command line program that prints the lines of its input or

concatenation of all files listed in its argument list in sorted order.

� The sort command is a command line utility for sorting lines of text files.

� It supports sorting alphabetically, in reverse order, by number, by month and can also

remove duplicates.

� The sort command can also sort by items not at the beginning of the line, ignore case

sensitivity and return whether a file is sorted or not.

� Sorting is done based on one or more sort keys extracted from each line of input.

� By default, the entire input is taken as sort key.

� Blank space is the default field separator.

The sort command follows these features as stated below:

1. Lines starting with a number will appear before lines starting with a letter.

2. Lines starting with a letter that appears earlier in the alphabet will appear before lines

starting with a letter that appears later in the alphabet.

3. Lines starting with a lowercase letter will appear before lines starting with the same

letter in uppercase.

 Syntax : sort [OPTION]... [FILE]...

Options with sort function

1. -o Option : Unix also provides us with special facilities like if you want to write

the output to a new file, output.txt, redirects the output like this or you can also use the

built-in sort option -o, which allows you to specify an output file.

Using the -o option is functionally the same as redirecting the output to a file.

Note: Neither one has an advantage over the other.

Example: The input file is the same as mentioned above.

Syntax :

$ sort inputfile.txt > filename.txt OR

$ sort -o filename.txt inputfile.txt

Command:

$ sort file.txt > output.txt

$ sort -o output.txt file.txt

$ cat output.txt

Output :

abhishek

chitransh

divyam

harsh

naveen

rajan

satish

2. -r Option: Sorting In Reverse Order : You can perform a reverse-order sort using the -r

flag. the -r flag is an option of the sort command which sorts the input file in reverse order

i.e. descending order by default.

Example: The input file is the same as mentioned above.

Syntax : $ sort -r inputfile.txt

Command :

$ sort -r file.txt

Output :

satish

rajan

naveen

harsh

divyam

chitransh

abhishek

3. -n Option : To sort a file numerically used –n option. -n option is also predefined in unix

as the above options are. This option is used to sort the file with numeric data present

inside.

Example: :

Let us consider a file with numbers:

Command :

$ cat > file1.txt

50

39

15

89

200

Syntax : $ sort -n filename.txt

Command :

$ sort -n file1.txt

Output :

15

39

50

89

200

4. -nr option : To sort a file with numeric data in reverse order we can use the

combination of two options as stated below.

Example :The numeric file is the same as above.

Syntax : $ sort -nr filename.txt

Command :

$ sort -nr file1.txt

Output :

200

89

50

39

15

5. -k Option : Unix provides the feature of sorting a table on the basis of any column

number by using -k option.

Use the -k option to sort on a certain column. For example, use “-k 2” to sort on the second

column.

Example :

Let us create a table with 2 columns

$ cat > employee.txt

manager 5000

clerk 4000

employee 6000

peon 4500

director 9000

guard 3000

Syntax : $ sort -k filename.txt

Command :

$ sort -k 2n employee.txt

guard 3000

clerk 4000

peon 4500

manager 5000

employee 6000

director 9000

6. -c option : This option is used to check if the file given is already sorted or not & checks

if a file is already sorted pass the -c option to sort. This will write to standard output if

there are lines that are out of order. The sort tool can be used to understand if this file is

sorted and which lines are out of order

Example: :

Suppose a file exists with a list of cars called cars.txt.

Audi

Cadillac

BMW

Dodge

Syntax : $ sort -c filename.txt

Command :

$ sort -c cars.txt

Output :

sort: cars.txt:3: disorder: BMW

 Note : If there is no output then the file is considered to be already sorted

7. -u option : To sort and remove duplicates pass the -u option to sort. This will write a

sorted list to standard output and remove duplicates.

This option is helpful as the duplicates being removed gives us an redundant file.

Example : Suppose a file exists with a list of cars called cars.txt.

Audi

BMW

Cadillac

BMW

Dodge

Syntax : $ sort -u filename.txt

Command :

$ sort -u cars.txt

$ cat cars.txt

Output :

Audi

BMW

Cadillac

Dodge

8. -M Option : To sort by month pass the -M option to sort. This will write a sorted list to

standard output ordered by month name.

Example:

Suppose the following file exists and is saved as months.txt

$ cat > months.txt

February

January

March

August

September

Using The -M option with sort allows us to order this file.

Command :

$ sort -M months.txt

$ cat months.txt

Output :

January

February

March

August

September

2. Paste
Paste command is one of the useful commands in unix or linux operating system.

The paste command merges the lines from multiple files.

The paste command sequentially writes the corresponding lines from each file separated by a

TAB delimiter on the unix terminal.

The syntax of the paste command is

paste [options] files-list

The options of paste command are:

-d : Specify of a list of delimiters.

-s : Paste one file at a time instead of in parallel.

--version : version information

--help : Help about the paste command.

Paste Command Examples:

Create the following three files in your unix or linux servers to practice to practice the

examples:

> cat file1 > cat file2 > cat file3

Unix Dedicated server Hosting

Linux Virtual server Machine

Windows Operating system

1. Merging files in parallel

By default, the paste command merges the files in parallel. The paste command writes

corresponding lines from the files as a tab delimited on the terminal.

> paste file1 file2 | > paste file2 file1

Unix Dedicated server | Dedicated server Unix

Linux Virtual server | Virtual server Linux

Windows Windows

2. Specifying the delimiter

Paste command uses the tab delimiter by default for merging the files. You can change the

delimiter to any other character by using the -d option.

> paste -d"|" file1 file2

Unix|Dedicated server

Linux|Virtual server

Windows|

In the above example, pipe delimiter is specified

3. Merging files in sequentially.

You can merge the files in sequentially using the -s option. The paste command reads each file

in sequentially. It reads all the lines from a single file and merges all these lines into a single

line.

> paste -s file1 file2

Unix Linux Windows

Dedicated server Virtual server

The following example shows how to specify a delimiter for sequential merging of files:

> paste -s -d"," file1 file2

Unix,Linux,Windows

Dedicated server,Virtual server

4. Specifying multiple delimiters.

Multiple delimiters come in handy when you want to merge more than two files with different

delimiters.

For example I want to merge file1, file2 with pipe delimiter and file2, file3 with comma

delimiter. In this case multiple delimiters will be helpful.

> paste -d"|," file1 file2 file3

Unix|Dedicated server,Hosting

Linux|Virtual server,Machine

Windows|,Operating system

5. Combining N consecutive lines

The paste command can also be used to merge N consecutive lines from a file into a single line.

The following example merges 2 consecutive lines into a single line

> cat file1 | paste - -

Unix Linux

Windows

• $ cat file1|paste - - -

 unix linux windows

• $ cat file1|paste -

unix

linux

windows

Comparing Files
Sometimes user wants to know that 2 files are identical or not.

That means the content of the files are same or different.

commands for comparing files : cmp, diff, comm

1. cmp (compare) :

cmp command in Linux/UNIX is used to compare the two files byte by byte and helps you to

find out whether the two files are identical or not.

� When cmp is used for comparison between two files, it reports the location of the first

mismatch to the screen if difference is found and if no difference is found i.e the files

compared are identical.

� cmp displays no message and simply returns the prompt if the the files compared are

identical.

Syntax:

cmp [OPTION]... FILE1 [FILE2 [SKIP1 [SKIP2]]]

SKIP1 ,SKIP2 & OPTION are optional and FILE1 & FILE2 refer to the filenames .

The syntax of cmp command is quite simple to understand.

If we are comparing two files then obviously we will need their names as arguments (i.e as

FILE1 & FILE2 in syntax).

In addition to this, the optional SKIP1 and SKIP2 specify the number of bytes to skip at the

beginning of each file which is zero by default and OPTION refers to the options compatible

with this command about which we will discuss later on.

cmp Example : As explained that the cmp command reports the byte and line number if a

difference is found. Now let’s find out the same with the help of an example. Suppose there are

two files which you want to compare one is file1.txt and other is file2.txt :

$cmp file1.txt file2.txt

1. If the files are not identical : the output of the above command will be :

$cmp file1.txt file2.txt

file1.txt file2.txt differ: byte 9, line 2

 /*indicating that the first mismatch found in two files at byte 20 in second line*/

2. If the files are identical : you will see something like this on your screen:

$cmp file1.txt file2.txt

$ _

/*indicating that the files are identical*/

OPTIONS

-c

Print the differing characters.

 Display control characters as a '^' followed by a letter of the alphabet and precede

characters that have the high bit set with 'M-' (which stands for "meta").

e.g.: $cmp -c f1 f2

f1 f2 differ: byte 2, line1 is 160p 53+

$cmp -lc f1 f2

ans: 2 160 53+

 3 160 53+

--ignore-

initial=BYTES

Ignore any differences in the the first BYTES bytes of the input files.

Treat files with fewer than BYTES bytes as if they are empty.

e.g.: $cmp i3 f1 f2

$

-l (L)

Print the byte/character number in decimal and the differing character value in octal for

each character is differ in both files.

e.g.: $cmp -l f1 f2

ans: 2 160 53

 3 160 53

i.e. : it display detailed list in 3 column. the 1st shows position of different characters in

files, 2nd shows the octal value of different characters in file f1 and third shows the octal

value of differ character in file f2.

--quiet

-s

--silent

Do not print anything; only return an exit status indicating whether the files differ.

Return Values

The cmp utility exits with one of the following values:

0—The files are identical.

1—The files are different; this value includes the case where one file is identical to the

first part of the other. In the latter case, if the -s option has not been

specified, cmp writes to standard output that EOF was reached in the shorter file (before

any differences were found).

>1—An error occurred.

//...cmp command used with -s option...//

$cmp -s file1.txt file.txt

1

/*indicating files are different without

displaying the differing byte and line*/

2. comm:

Compare two sorted files line-by-line.

Compare sorted files FILE1 and FILE2 line-by-line.

comm syntax : comm [OPTION]... FILE1 FILE2

With no options, comm produces three-column output.

Column 1 contains lines unique to FILE1,

column 2 contains lines unique to FILE2, and

column 3 contains lines common to both files.

result :

Each of these columns can be suppressed individually with options.

Options:
-1 suppress column 1 (lines unique to FILE1)

-2 suppress column 2 (lines unique to FILE2)

-3 suppress column 3 (lines that appear in both files)

--check-order check that the input is correctly sorted, even if all input lines are pairable

--nocheck-order do not check that the input is correctly sorted

--output-delimiter=STR separate columns with string STR

--help display a help message, and exit.

--version output version information, and exit.

Examples

Let's say you have two text files, recipe.txt and shopping-list.txt.

recipe.txt contains these lines:

All-Purpose Flour

Baking Soda

Bread

Brown Sugar

Chocolate Chips

Eggs

Milk

Salt

Vanilla Extract

White Sugar

And

shopping-list.txt contains these lines:

All-Purpose Flour

Bread

Brown Sugar

Chicken Salad

Chocolate Chips

Eggs

Milk

Onions

Pickles

Potato Chips

Soda Pop

Tomatoes

White Sugar

If we run the comm command on the two files, it will read both files and give us three columns

of output:

comm recipe.txt shopping-list.txt

 All-Purpose Flour

Baking Soda

 Bread

 Brown Sugar

 Chicken Salad

 Chocolate Chips

 Eggs

 Milk

 Onions

 Pickles

 Potato Chips

Salt

 Soda Pop

 Tomatoes

Vanilla Extract

 White Sugar

Here, each line of output has either zero, one, or two tabs at the beginning, separating the

output into three columns:

1. The first column (zero tabs) is lines that only appear in the first file.

2. The second column (one tab) is lines that only appear in the second file.

3. The third column (two tabs) is lines that appear in both files.

3. diff:

diff stands for difference.

This command is used to display the differences in the files by comparing the files line by

line.

Unlike its fellow members, cmp and comm, it tells us which lines in one file have is to be

changed to make the two files identical.

The important thing to remember is that diff uses certain special symbols and instructions

that are required to make two files identical.

It tells you the instructions on how to change the first file to make it match the second file.

Special symbols are:

a : add

c : change

d : delete

Syntax :

diff [options] File1 File2

Lets say we have two files with names a.txt and b.txt containing 5 Indian states.

$ ls a.txt b.txt

$ cat a.txt

Gujarat

Uttar Pradesh

Kolkata

Bihar

Jammu and Kashmir

$ cat b.txt

Tamil Nadu

Gujarat

Andhra Pradesh

Bihar

Uttar pradesh

Now, applying diff command without any option we get the following output:

$ diff a.txt b.txt

0a1

> Tamil Nadu

2,3c3

< Uttar Pradesh

 Andhra Pradesh

5c5

 Uttar pradesh

Let’s take a look at what this output means.

The first line of the diff output will contain:

� Line numbers corresponding to the first file,

� A special symbol and

� Line numbers corresponding to the second file.

Like in our case, 0a1 which means after lines 0 (at the very beginning of file) you have to

add Tamil Nadu to match the second file line number 1.

It then tells us what those lines are in each file preceded by the symbol:

� Lines preceded by a < are lines from the first file.

� Lines preceded by > are lines from the second file.

� Next line contains 2,3c3 which means from line 2 to line 3 in the first file needs to be

 changed to match line number 3 in the second file. It then tells us those lines with the

 above symbols.

� The three dashes (“—“) merely separate the lines of file 1 and file 2.

As a summary to make both the files identical, first add Tamil Nadu in the first file at very

beginning to match line 1 of second file after that change line 2 and 3 of first file i.e. Uttar

Pradesh and Kolkata with line 3 of second file i.e. Andhra Pradesh.

After that change line 5 of first file i.e. Jammu and Kashmir with line 5 of second file i.e. Uttar

pradesh.

Now let’s see what it looks like when diff tells us that we need to delete a line.

$ cat a.txt

Gujarat

Andhra Pradesh

Telangana

Bihar

Uttar pradesh

$ cat b.txt

Gujarat

Andhra Pradesh

Bihar

Uttar pradesh

$ diff a.txt b.txt

3d2

< Telangana

Here above output 3d2 means delete line 3rd of first file i.e. Telangana so that both the

files sync up at line 2.

Options:

-i : By default this command is case sensitive.

To make this command case in -sensitiveuse -i option with diff.

$ cat file1.txt

dog

mv

CP

comm

$ cat file2.txt

DOG

cp

diff

comm

Without using this option:

$ diff file1.txt file2.txt

1,3c1,3

< dog

< mv

 DOG

> cp

> diff

Using this option:

$ diff -i file1.txt file2.txt

2d1

 diff

-r (recursive) : it recursively compare files of subdirectories with same name and display

nothing if identical otherwise display differences to make both files identical.

Consider the directory structure as below:

-s : It reports when 2 files are identical otherwise display differences between them.

 e.g.: $diff -s f1 f1 // display message if files are identical

 ans: Files f1 and F1 are identical

What is the difference between cmp and diff commands? Provide an example for
each.

cmp

-Byte by byte comparision performed for two files comparision and displays the first mismatch byte.

-cmp returns the 1st byte and the line no of the fileone to make the changes to make the fileone

identical to filetwo.

-Directory names cannot be used.

diff

-Indicates the changes that are to be done to make the files identical.

-returns the text of filetwo that is different from filetwo.

-Directory names can be used

////////////////////////////////////

Translating characters:
tr: tr stands for translate.

The tr command in UNIX is a command line utility for translating or deleting characters.

It supports a range of transformations including uppercase to lowercase, squeezing repeating

characters, deleting specific characters and basic find and replace.

It can be used with UNIX pipes to support more complex translation.

Syntax :

$ tr [OPTION] SET1 [SET2]

d11

d1 t1

Hello world

t2

d1

d1 d11 f1 f2 t1

hello

world

Options

-c: complements the set of characters in string. i.e., operations apply to characters not in the

 given set.

-d: delete characters in the first set from the output.

-s: replaces repeated characters listed in the set1 with single occurrence

-t: truncates set1

Tr command Examples:

1. Convert lower case letters to upper case

The following tr command translates the lower case letters to capital letters in the give string:

> tr "[:lower:]" "[:upper:]"

linux dedicated server

LINUX DEDICATED SERVER

> echo "linux dedicated server" | tr "[a-z]" "[A-Z]"

LINUX DEDICATED SERVER

$ tr '[a-z]' '[A-Z]'

hiii

HIII

hello

HELLO

tr '[a-z]' '[A-Z]' > translate.txt

 $ cat f1

unix or linux os

is unix good os

is linux good os

$ tr "[a-z]" "[A-Z]" <f1

UNIX OR LINUX OS

IS UNIX GOOD OS

IS LINUX GOOD OS

Note: tr does’ not take a filename as its argument, but it takes input through redirection or a

pipe or std. input

2. Transform upper case letters to lower case.

Similar to the above example, you can translate the uppercase letters to small letters.

> echo "UNIX DEDICATED SERVER" | tr "[:upper:]" "[:lower:]"

unix dedicated server

> echo "UNIX DEDICATED SERVER" | tr "[A-Z]" "[a-z]"

unix dedicated server

$cat>f2

a/b

c/d

e-f

$ tr '/' '-' <f2

a-b

c-d

e-f

$ tr '/' '-' f2

tr: too many arguments

Try `tr --help' for more information.

3. Replace non-matching characters.

The -c option is used to replace the non-matching characters with another set of characters.

> echo "unix" | tr -c "u" "a"

uaaa

In the above example, except the character "c" other characters are replaced with "a"

� $cat f2

a/b8

c/d4

e-fA

$tr -c 'a-z0-9' '*' <f2

a*b8*c*d4*e*f**$

� to replace newline character(newline having octal value 012) visible with dollar

symbol

$ tr '\012' '$'<f2

a/b8$c/d4$e-fA$

$

� it replaces ‘a’ with ‘x’ and characters ‘b,c,d,e’ with y and rest characters will be

unchanged.

$cat f2

a/b8

c/d4

e-fA

$ tr 'abcde' 'xy'<f2

x/y8

y/y4

y-fA

� here a,b,c,d,e all will be replaced by x

$ tr 'abcde' 'x'<f2

x/x8

x/x4

x-fA

4. Delete non-printable characters

The -d option can be used to delete characters. The following example deletes all the non-

printable characters from a file.

> tr -cd "[:print:]" < filename

5. Squeezing characters

You can squeeze more than one occurrence of continuous characters with single occurrence.

The following example squeezes two or more successive blank spaces into a single space.

> echo "linux server" | tr -s " "

linux server

Here you can replace the space character with any other character by specifying in set2.

> "linux server" | tr -s " " ","

linux,server

6. Delete characters

The following example removes the word linux from the string.

> echo "linuxserver" | tr -d "linux"

server

$ cat f2

a/b8

c/d4

e-fA

$tr -d '0-9a-z'<f2

/

/

-A

#deletes number and all small letters from file.

$tr -d '0-9a-c'<f2

/

/d

e-fA

Formatting text files:

1. pr
pr command is used to paginating the files

pr command prepares a file for printing by adding suitable headers, footers, and

formatted text to an input file.

Syntax,

$ pr options filename
By default, pr command inserts 5- lines of header at the top and 5- lines of footer at

the bottom of each page of the input file.

Example,

$pr file1

PR COMMAND OPTIONS:

a. pr –l (length)

i. By default, the page size used by pr command is 66 (header as well as footer

included) lines, which can be changed with the –l (length) option along with

argument.

ii. Example,

$ pr –l 72 file1

2015-07-15 8:25 file1 Page1

This is mkics

$ _

This command sets the page length of 72 lines instead of 66 lines.

b. pr +k

i. When printing large file that spans to several pages, we can instruct pr

command to start printing from a specific page.

ii. This is done with +k option, where k � any integer which indicate that

formatting start from kth page of the input file.

iii. Example,

$ pr +10 file1 Starts formatting from page 10

c. pr –k

i. Here, k is any integer.

ii. This option produces output in more than one column and print down the

page (top to bottom)

iii. Example,

To print first 3 column

 $ pr -3 file1

d. pr –a

i. It prints column across (left to write) the page rather than down the page.

ii. It is used together with –k option.

iii. Example,

$ pr –a -3 file1

e. pr –d

i. It double-spaces the text of input file.

ii. Example,

$ pr –d file1 double spaces lines of file1

f. pr –n

i. It prints a line number before each line.

ii. It gives the line number to empty as well as non-empty lines.

iii. Example,

$ pr –n file1 Numbering each line of file1

g. pr –oN

i. It sets a left margin N-characters wide where N � any positive number

ii. Example,

$ pr -o10 file1 set left margin 10-characters wide

h. pr –t

i. This command does not print header and footer of input file.

ii. Example,

$ pr –t file1 do not print header and footer

i. pr –h

i. It uses a suitable centered header instead of filename in page header.

ii. Example,

$ pr –h “MKICS.doc” file1 display “MKICS.doc” instead of file1

j. pr –wN

i. It sets page width to N-characters for multiple text columns.

ii. If line length is greater than N then remaining characters are truncated from

right.

iii. It is used with –k option.

iv. Example,

$ pr –w90 -3 file1

It displays 3- column output. Here, size 90 is equally distributed to each column. So,

size of each column is 30 characters.

2. nl
o It provides line number to each logical line of files.

o Logical line means non-empty lines which consists something apart from the new line

character.

o Syntax,

$ nl [option] [filenames]

o To give number to each logical lines

$ nl file1

1 C++ Lang

2 C Lang

3 Asp.net

� NL COMMAND OPTIONS:

o 7 options:

1. nl –n format_characters

� It inserts line number according to format characters.

� Format characters:

Format Characters Meaning

Ln Left justified, no leading zeros

Rn Right justified, no leading zeros

Rz Right justified, leading zeros

� By default, width of line number is 6-characters.

� To display leading zeros with line numbers

$ nl –n rz file1

000001 C++ Lang

000002 C Lang

000003 Asp.net

2. nl –wN

� It sets width of line number column (i.e. 1st column) to N, where N � any

positive number.

� Example,

To set width of line number column

$ cat file2

 $ nl –nrz –w3 file1

001 C++ Lang

002 C Lang

003 Asp.net

3. nl –s sep

� It adds separator sep after line number instead of default separator TAB

� Example,

To add separator “|” between number column and file content

$ nl –n rz –w3 –s’|’ file1

001|C++ Lang

002|C Lang

003|Asp.net

4. nl –iN

� It sets line number increment N at each line where N� any positive number.

� Example,

To set odd number to each line

$ nl –i2 file1

001 C++ Lang

003 C Lang

005 Asp.net

5. nl –b body-style

� It uses body-style for numbering body lines.

� Body-style used with –b option

Body-Style Meaning

A Number all lines

T Number only non empty lines

N Number no lines

pREGEXP Number only lines that contain a match for REGEXP

� Example,

To assign line numbers to line that contain ‘hello’ pattern

$ nl –bp hello file1

1 hello world

 unix

2 hello asp.net

3 hello

 cn

6. nl –lN

� It joins a group of N empty lines and is counted as one where N � any positive

number.

� It is used with –ba option.

� Example,

To make groups of 2 consecutive blank line

$ nl –l2 –ba file1

1 C++

2 C

3 Unix

4

5 Asp.net

6

7 CN

7. nl –vN

� It sets initial value for line number on each logical page.

� Example,

To assign even numbers to each line

$ nl –v2 –i2 file1

 2 C++

 4 Unix

 6 Asp.net

$ nl –v2 file1

 2 C++

 3 Unix

 4 Asp.net

Other filtering utilities:

1. uniq
o It gets one copy of each line and writes it to standard output.

o Means it reads unique lines from successive repeated lines and writes it to standard

output.

o Syntax,

$ uniq [option] … [input file [output file]]
o It discard all but one of the successive identical line from input file or standard input and

writes it to output file or standard output.

Example,

If we apply both input and output file with uniq command then it writes unique lines

into output files

$ cat uniq1

 Cpp Language

 C++ Language

 Hello surat

 Hello surat

 Red hat linux

 Unix os

 $ uniq uniq1 uniz1.out

 Cpp Language

 C++ Language

 Hello surat

 Red hat linux

 Unix os

� UNIQ COMMAND OPTIONS:

o 8 options:

1. uniq –c (Count)

� This option prefixes each line by the number that indicates occurrences of line.

� Example,

To print the frequency or occurrence of all lines

 $ uniq –c uniq1

1 Cpp Language

 1 C++ Language

 2 Hello surat

 1 Red hat linux

 1 Unix os

2. uniq –d (Duplicate)

� It prints only duplicate lines.

� Example,

$ uniq –d uniq1

Hello surat

3. uniq –D (All repeated)

� It prints all duplicate lines.

� Example,

$ uniq –D uniq1

Hello surat

Hello surat

4. uniq –fN (Skip-fields � N)

� It avoids first N fields of each line during comparison.

� Example,

To display unique lines after avoiding 1st field of each lines

 $ uniq –f1 uniq1

 C++ language

 Hello surat

 Red hat linux

 Unix os

Here, 1st field of lines 1 and 2 are c++ and cpp respectively.

If we ignored 1st field of each line then first two lines of input file is considered as

same.

So, 2nd line is not display on screen.

5. uniq –i (Ignore Case)

� It ignores differences in case when comparing.

� Example,

$ uniq u2

HELLO

Hello

Unix OS

$ uniq –i u2

HELLO

Unix Os

6. uniq –u (Unique)

� Sometimes, a user is interested only in unique lines of the file then –u is used.

� This option prints non-repeated lines of input file.

� Example,

To display only unique lines

 $ uniq –u uniq1

 Cpp Language

 C++ Language

 Red hat linux

 Unix os

7. uniq –sN (Skip-chars � N)

� It avoids comparing first N-characters.

� Example,

$ cat u3

Cpp programming

C++ programming

J++ programming

Java programming

 If you ignore 1st character of each line

 $ uniq –s1 u3

Cpp programming

C++ programming

Java programming

Here, we ignore 1st character of each line then during comparison 2nd and 3rd

lines become unique/ identical. So, 3rd line do not display on screen.

8. uniq –wN (Check-chars � N)

� It compares no more than N characters in lines.

� Example,

If we compare 1st characters of each line then 1st 2 lines and last 2 lines of file

becomes identical.

$ uniq –w1 u3

Cpp programming

Java programming

2. wc
wc, or "word count," prints a count of newlines, words, and bytes for each input file.

 As the name implies, it is mainly used for counting purpose.

� It is used to find out number of lines, word count, byte and characters count in the files

specified in the file arguments.

� By default it displays four-columnar output.

� First column shows number of lines present in a file specified, second column shows

number of words present in the file, third column shows number of characters present in

file and fourth column itself is the file name which are given as argument.

Syntax:

wc [OPTION]... [FILE]...

Let us consider two files having name state.txt and capital.txt containing 5 names of the Indian

states and capitals respectively.

$ cat state.txt

Andhra Pradesh

Arunachal Pradesh

Assam

Bihar

Chhattisgarh

$ cat capital.txt

Hyderabad

Itanagar

Dispur

Patna

Raipur

Passing only one file name in the argument.

$ wc state.txt

 5 7 63 state.txt

 OR

$ wc capital.txt

 5 5 45 capital.txt

Options:

1. -l: This option prints the number of lines present in a file. With this option wc command

displays two-columnar output, 1st column shows number of lines present in a file and 2nd itself

represent the file name.

With one file name

$ wc -l state.txt

5 state.txt

With more than one file name

$ wc -l state.txt capital.txt

 5 state.txt

 5 capital.txt

 10 total

2. -w: This option prints the number of words present in a file. With this option wc command

displays two-columnar output, 1st column shows number of words present in a file and 2nd is

the file name.

With one file name

$ wc -w state.txt

7 state.txt

With more than one file name

$ wc -w state.txt capital.txt

 7 state.txt

 5 capital.txt

 12 total

3. -c: This option displays count of bytes present in a file. With this option it display two-

columnar output, 1st column shows number of bytes present in a file and 2nd is the file name.

With one file name

$ wc -c state.txt

63 state.txt

With more than one file name

$ wc -c state.txt capital.txt

 63 state.txt

 45 capital.txt

108 total

4. -m: Using -m option ‘wc’ command displays count of characters from a file.

With one file name

$ wc -m state.txt

63 state.txt

With more than one file name

$ wc -m state.txt capital.txt

 63 state.txt

 45 capital.txt

108 total

5. -L: The ‘wc’ command allow an argument -L, it can be used to print out the length of longest

(number of characters) line in a file. So, we have the longest character line Arunachal Pradeshin

a file state.txt and Hyderabad in the file capital.txt. But with this option if more than one file

name is specified then the last row i.e. the extra row, doesn’t display total but it display the

maximum of all values displaying in the first column of individual files.

Note: A character is the smallest unit of information that includes space, tab and newline.

With one file name

$ wc -L state.txt

17 state.txt

With more than one file name

$ wc -L state.txt capital.txt

 17 state.txt

 10 capital.txt

 17 total

3. more
It display file content page-wise.

more syntax: more [-option] [-num lines] [+/pattern] [+linenum] [file ...]

Options

-

num lines

Sets the number of lines that makes up a screenful. The lines must be an integer.

-d With this option, more will prompt the user with the message "[Press space to continue, 'q' to

quit.]" and display "[Press 'h' for instructions.]" when an illegal key is pressed, instead of

ringing a bell.

-l more usually treats ^L (CONTROL-L, the form feed) as a special character, and will pause after

any line that contains it. The -l option will prevent this behavior.

-f Causes more to count logical, rather than screen lines (i.e., long lines are not wrapped).

-p Do not scroll. Instead, clear the whole screen and then display the text. This option is switched

on automatically if the more executable is named page.

-c Do not scroll. Instead, paint each screen from the top, clearing the remainder of each line as it

is displayed.

-s Squeeze multiple blank lines into one blank line.

-u Do not display underlines.

+/string Search for the string string, and advance to the first line containing string when the file is

displayed.

+num Start displaying text at line number num.

Commands

When displaying a file, more can be controlled with a set of commands loosely based on the

text editor vi. Some commands can be preceded by a decimal number referred to as k in the

following descriptions.

h, ? Show help (display a brief command summary). If you forget all the other

commands, remember this one!

[k]SPACE Pressing the spacebar displays the next k lines of text. If k is not specified, more

displays a full screen of new text.

[k]z Like pressing SPACE, but k becomes the new default number of lines to display.

[k]RETURN Pressing the return key displays next k lines of text. The default is 1 line. If

specified, kbecomes the new default.

[k]d, [k]^D Pressing d or CONTROL-D scrolls k lines. The default is the current scroll size,

which is initially 11 lines. If specified, k becomes the new default.

q, Q, ^C Pressing q, Q, or CONTROL-C (the interrupt key) exits the program.

[k]s Skip forward k lines of text. Defaults to 1.

[k]f Skip forward k screenfuls of text. Defaults to 1.

b, ^B Pressing b or CONTROL-B skips backward k lines of text. Defaults to 1. (This only

works when viewing files, not piped input).

' Go to the place where the previous search started.

= Display the current line number.

[k]/pattern Search for the kth occurrence of the regular expression pattern. Defaults to 1.

[k]n Search for the kth occurrence of the last regular expression searched for, which

defaults to 1.

!command, :!command Execute command in a subshell.

v Start up an editor at current line. The editor is taken from the environment

variableVISUAL if it is defined, or EDITOR if VISUAL is undefined; if neither is

defined, defaults to "vi".

^L Pressing CONTROL-L redraws the screen.

[k]:n Go to the kth next file. Defaults to 1.

[k]:p Go to the kth previous file. Defaults to 1.

:f Display the current file name and line number.

. Repeat previous command.

4. tee
Tee command reads from standard input and writes to standard output as well as a

file.

Means it has one input and two outputs.

Syntax,

tee [option] … [filename]…

We know that all intermediate output in a pipe is discarded by UNIX i.e. it is not saved on

the disk.

Sometimes a user may want to pipe the standard output of a command to another

command and also save it on disk for later use i.e. sends one copy of the output as

standard input to next command and one copy is redirect to a disk file.

TEE COMMAND OPTIONS:

a. tee –a (Append):

i. It does not overwrite. The output is appended to a given file.

ii. The user also wishes to preserve the user’s list in a file called alluser and

display the list of logged-in user on a screen

$ who | tee alluser

root :0 Aug 13 02:07

root pts/1 Aug 13 02:07

nirzari pts/2 Aug 13 03:06 (192.168.0.64)

iii. To display both, list of logged in users as well as their counts on a screen

$ who | tee /dev/tty | wc –l

root :0 Aug 13 02:07

root pts/1 Aug 13 02:07

nirzari pts/2 Aug 13 03:06 (192.168.0.64)

 3

iv. It is also useful to create a new file.

$ tee t2

Unix

Unix

Asp.net

Asp.net

cn

cn

$ cat t2

Unix

Asp.net

cn

Advance filtering utilities:
� REGULAR EXPRESSIONS:

o It is consist of a sequence of characters that is used to match against text.

o Regular expression consists of atoms and operators.

o Atom specifies what we are looking for.

o Operators are used to combine atoms into complex expression.

o Structure of Regular Expression:

� ATOMS:

o Atoms available in regular expression are:

� Single character

� Dot character

� Class character

� Anchor

� Back reference

1) Single character:

Operators Atoms

� A single character matches itself.

� Length of single character atom is one.

� Comparison is done character by character and if match found then it returns

TRUE, else FALSE.

� Example,

The successful and unsuccessful matches of regular expression with a text.

Unmatched Matched

 (Successful Search)

2) Dot Character:

���� This atom is denoted by dot (.)

���� It is also single character atom that matches any single character except new line

character.

���� If any single character occurs anywhere in a text then the pattern match

succeed otherwise failed.

���� Example,

Successful match of regular expression:

 Matched

 (Successful Search)

Unmatched Matched

(Successful Search)

 Unmatched Unmatched Matched

(Unsuccessful Search)

3) Class Character:

���� It defines set of ASCII characters within a pair of square bracket.

���� Length of this character atom is one.

���� If any of the character within the class matches in a text then the pattern match

is succeeded otherwise not.

� Example

U N I X U N I X

N N Regular

Expression

TRUE

TRUE

U N I X

. Regular

Expression

U N I X

 . i

U N I X

 . I
TRUE

U N I X

 . I

U N i X

 . I . I

U N I X
FALSE

U n I x

[ijk]
FALSE

(Unsuccessful Search)

(Successful Search)

���� Regular expression that matches only vowels:

[aeiouAEIOU]

���� Regular expression that matches any text which contains numeric digit 0-9:

[0-9]

���� Regular expression that matches only alphabets:

[A-Za-z]

���� Regular expression that matches any character other than digit is:

[^0-9] //no digits only characters

���� Regular expression that matches character other than vowel is:

[^AEIOUaeiou]

���� Regular expression that matches all digits and dash:

[0-9\-]

���� Regular expression that matches text that contains alphabets digit and ^

[\^0-9A-Za-z]

���� Regular expression that matches any character other than alphabet is:

[^A-Za-z]

���� Regular expression that matches any special character

[^A-Za-z0-9]

���� Regular expression that matches only capital vowel:

[AEIOU]

4) Anchor:

���� Anchors are the atoms that are not matched to text but it defines where the

character in the regular expression must be located in a text.

���� There are 4 types of anchor:

Example:

� ^a � It matches a line that starts with character ‘a’.

� a$ � It matches a line that ends with character ‘a’.

� \<a � It matches a line in which any word starts with character ‘a’.

� a\> � It matches a line in which any word ends with character ‘a’.

5) Back Reference:

���� It is used to match one or more characters to text, previously saved in a buffer.

We can use up to 9 buffers.

���� So we can use 9 back reference (\1,\2,…,\9).

Anchor Meaning

^ It matches pattern at the beginning of line

$ It matches pattern at the end of line

\< It matches pattern at the beginning of word

\> It matches pattern at the end of word

U n I x

[ijU]
TRUE

���� Back references are used with save operator.

� OPERATORS:

o It plays powerful role in creation of regular expression.

o To combine atoms with operator, we can create more complex regular expression.

o 5 types of operators:

���� Sequence Operator

���� Alternation Operator

���� Repetition Operator

���� Group Operator

���� Save Operator

1) Sequence Operator:

� This operator concatenates a series of atoms in a regular expression. Then this

operator is implicitly included between them.

� Whenever we use one or more atoms one after another in a regular expression then

there is one sequence operator between each of them.

� Examples of sequence operator:

Expression Meaning

Software Matches pattern ‘Software’.

^The Matches pattern ‘The’ at the beginning of the line.

\<[a-z]..[0-9]\> Matches 4-characters pattern that starts with small

alphabet and end with digit.

2) Alternation Operator:

� This operator is denoted by pipe (|)

� It is used to define one or more alternatives of patterns.

� Examples,

Expression Meaning

Hardware | Software Matches pattern ‘Hardware’ or ‘Software’.

Unix | UNIX Matches pattern ‘UNIX’ or ‘unix’.

3) Repetition Operator:

� It is represented by a pair of escaped curly braces i.e. \{…\}

� It specifies that the atom or expression written before may be repeated.

� It should be written as: atom/expression \{m, n\}

� It shows that previous atom or expression will be repeated from m to n times.

� The expression written in escaped curly braces is known as repetition operator.

� It is also known as braced regular expression (BRE).

� Example,

REGULAR EXPRESSION MEANING

a\{5,10\} It repeats character ‘a’ 5 to 10 times

[a-zA-Z]\{15,20\} It repeats alphabets 15 to 20 times

.\{5,10\} It repeats any character 5 to 10 times

[a-zA-Z]\{10\} It matches a line that contains 10 alphabets

[a-zA-Z]\{5,\} It matches a line that contains at least 5

alphabets and max can be any. OR

Matches lines that contains 5 or more

alphabets

[a-zA-Z]\{,5\} It matches a line that contains at most 5

alphabets. . OR Matches lines that contains

less than or equal to 5 alphabets

Ch* is equivalent to ch\{0,\} Ch can occur 0 or more times

Ch? is equivalent to ch\{0,1\} Ch can occur 0 or one times

Ch+ is equivalent to ch\{1,\} Ch can occur 1 or more times

4) Group Operator:

� It is a pair of opening and closing parenthesis that allows the next operator to be

applied to the whole group.

� It can be written as: (exp1|exp2|exp3|…|exp N) exp

� It concatenates any of the expression between parentheses with exp.

� Example,

REGULAR EXPRESSION MEANING

(unix|linux)OS Match a line which contains pattern unix OS or

linux OS

(hard|soft|firm)ware Match a line which contains pattern hardware or

Software or firmware.

5) Save Operator:

� It is denoted by a pair of escaped parenthesis i.e. \(…\)

� The save operator saves one or more characters enclose within escaped parenthesis

in a buffer to be matched later with.

� General form of save operator is: \(exp 1\)\(exp 2\)…\(exp 9\)exp

Here exp 1 saved in buffer 1, exp 2 saved in buffer 2 and so on up to 9th buffer which

saves exp9.

� These buffers can be referred by using back reference.

� Buffer 1 can be referred by \1

� Buffer 2 can be referred by \2 and so on.

� To match a line that start and end with same character then regular expression will

be: ^\(.\).*\1$

� To match a pattern

like hello, programming etc.: \(.\)\1.*

� To match a pattern

like 12321kj, madam, nayana etc.: \(.\)\(.\).\2\1.*

� To match pattern

like 11, 1abcfd1, 4hd4 etc. : ^\([0-9]\).*\1$

grep
o grep stands for Globally search regular Expression and Print it.

o It is also known as pattern matching utility.

o grep scans its input for a pattern, and display the selected pattern, the line numbers or

the filenames where the pattern occurs.

o The pattern that is searched in the file is referred to as the regular expression.

o Syntax:

$ grep [options] pattern filename(s)

o grep is a filter.

o It can search its standard input for the pattern and stores the output in a file:

$ who|grep kumar >file2

o Here search will be performed in output of who, and pattern to be searched will be

kumar, then it will be saved in file file2

o Another example: $ grep “sales” file1

o Pattern can be given with quotes as well as without quote.

o grep gives prompt if pattern not found.

o Example with two filenames:

$grep “director” f1 f2

o When a pattern contains multiple words then quoting is essential as:

$grep ‘jai sharma’ f1

o If there is command substitution or variable evaluation in a pattern then double quotes

should be used.

� GREP COMMAND OPTIONS:

OPTIONS SIGNIFICANCE

-i Ignores case for matching

-v Doesn’t display lines matching expression

-n Display line number along with line

-c Displays count of occurrences

-l Display list of filenames only

-e exp Specifies expression exp with this option.

It can use multiple times.

-x Matches pattern with entire line

-f filename Takes pattern from file, one per line

-E Treats pattern as an extended regular

expression(ERE)

-F Matches multiple fixed strings

 Examples,

1. $grep –i ‘NEHA file1

2. $grep –v ‘director’ file1>f1 #selects unmatched lines

3. $grep –n ‘marketing’ file1 #displays line number with selected lines at which

line that line is present

4. $grep –c ‘director’ file1 #output:3

$ grep –c director emp*.lst # counts lines containing pattern

Output: emp.lst:4

 emp1.lst:2

 empold.lst:6

 emp2.lst:6

5. $grep –l ‘manager’ *.lst #diisplays name of file

containing pattern

6. $grep –e “Agarwal” -e “aggarwal” -e “agarwal” file1

-e is used to select multiple patterns at a time

7. $grep –f pattern.lst file1

� BASIC REGULAR EXPRESSION (BRE):

SYMBOLS OR

EXPRESSION

MATCHES

* Zero or more occurrences of the previous character

g* Nothing or g,gg,ggg etc

. A single character OR Matches any one character

.* Nothing or any number of characters

[pqr] A single character p,q or r

Matches any one of a set characters

[c1-c2] A single character within the ASCII range represented by

c1 and c2

Matches any one of a range characters

[1-3] A digit between 1 and 3

[^pqr] A single character which is not a p,q or r

[^a-zA-Z] A non-alphabetic character

^pat Pattern pat at beginning of line

pat$ Pattern pat at end of line

bash$ bash at end of line

^bash$ bash as the only word in line

^$ Lines containing nothing

� THE CHARACTER CLASS:

o $ grep “[aA]g[ar][ar]wal” f1

o $ grep “[aA]gg*[ar][ar]wal” f1

o THE DOT (.)

$ grep “j.*saxena” f1

$ grep a.*Agarwal f1

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

$ grep a.Agarwal f1

o SPECIFYING PATTERN LOCATION(^ and $)

� $ - for matching at the end of line

� Example,

$ grep "6...$" f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

$ grep "2...$" f1

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

� ^ - for matching at the beginning of a line

� Example,

$ grep “^[^2]” f1 # Displays the files which are not beginning with 2

$ ls –l | grep “^d” #shows only directory

$ ls -l | grep ^d

drwxrwxr-x 3 nirzari nirzari 4096 Jul 28 02:26 d1

dr-xr-xr-x 2 nirzari nirzari 4096 Jul 29 02:13 d3

drwxrwxr-x 2 nirzari nirzari 4096 Jul 29 05:40 d5

drwxrwxr-x 3 nirzari nirzari 4096 Jul 14 2014 d6

� EXTENDED REGULAR EXPRESSIONS(ERE) AND egrep:

o Solaris user uses grep for extended regular expression with –E option.

o If your system not support this then use egrep without –E

o The ERE set includes 2 special characters:

1. + � It is used to matches one or more occurrence of the previous character

2. ? � It is used to matches zero or one occurrence of the previous character

Example:

$ grep –E “[aA]gg?arwal” f1

$ grep -E [aA]gg?arwal f1

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

$ grep [aA]gg?arwal f1

$ egrep [aA]gg?arwal f1

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

$ grep –E “#?include+<stdio.h>”

� MATCHING MULTIPLE PATTERNS (|,(AND))

o Pipe is the delimiter for multiple patterns.

o Note: here single quote is must

o Example,

 $ grep –E ‘sengupta|dasgupta’ f1

The characters ‘(‘ and ‘)’ group pattern, and do same as above

 $ grep –E ‘(sen|das)gupta’ f1

o ERE’s when combines with BRE’s forms very powerful regular expression.

o Example: $ grep –E ‘agg?[ar]+wal’ file1

o The Extended Regular expression(ERE) used by grep, egrep and awk are as follows:

EXPRESSION SIGNIFICANCE

Ch +

Matches one or more occurrence of character ch

Ch? Matches zero or one occurrence of character ch

Exp1|exp2 Matches exp1 or exp2

(x1|x2)x3 Matches x1x3 or x2x3

(lock|ver)wood Matches lockwood or verwood

� FGREP : SEARCH A FILE FOR A FIXED - CHARACTER STRING:

o fgrep command is used to extract fixed patterns.

o Patterns cannot extract from character class or special meta-character. Here f in fgrep

stands for fixed pattern.

o If pattern to be searched is a simple string, or a group of string then fgrep command is

recommended.

o fgrep command is faster than grep and egrep.

o Example,

� $ fgrep -x 'manager' f1

� $ fgrep 'manager' f1

� $ fgrep manager f1

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

� $ fgrep '[a-z]*' f1

� $ grep '[a-z]*' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

o #more than one pattern can be given by a newline character

� $ fgrep 'manager

sales' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

o # to take pattern from a file

$ fgrep -f f2 f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

points to be noted:

1. In egrep, if a pattern contains some special characters then it must be quoted.

2. –f option to extract pattern from a file also works in egrep.

Some more grep commands:

1. grep ‘.’ F1 #displays all lines except blank line.

2. grep ‘\.’ F1 #hides special meaning of . ,dot can occur anywhere in a line

3. quotes compulsory in variable substitution as:

$a=1

$ grep “$a” f1 #display lines containing 1.

4. quotes compulsory in command substitution:

$ grep “`echo hello`” f1

$ grep " `echo sales` " f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

5. $ grep ‘mm*’ f1 # * means 0 or more occurrence of previous character i.e.

0 or

more time ‘m’ is occurred

6. $ grep ‘^.\{8\}$’ f1 # Display the lines from file having length 8

7. $ grep ‘^.\{5,15\}$’ f1 # Display the lines from file having Minimum length 5 and

Maximum length 15

8. $ grep ‘^\(.\).*\1’ f1

SED : THE STREAM EDITOR:
o A special editor for modifying files automatically.

o To write a program to make changes in a file, sed tool is use.

o Sed command is the ultimate stream editor.

o Sed command performs non-interactive operations on a data stream.

o Sed command uses instructions to act on text.

o An instruction combines an address for selecting lines, with an action to be taken on

them.

o SED command in UNIX is stands for stream editor and it can perform lot’s of function on

file like, searching, find and replace, insertion or deletion.

o Though most common use of SED command in UNIX is for substitution or for find and

replace.

o By using SED you can edit files even without opening it, which is much quicker way to

find and replace something in file, than first opening that file in VI Editor and then

changing it.

o SED is a powerful text stream editor. Can do insertion, deletion, search and

replace(substitution).

o SED command in unix supports regular expression which allows it perform complex

pattern matching.

o Syntax: $ sed options ‘address action’ file(s)

o The address and action are enclosed within single quotes

sed commands:

• The sed supports several commands. Commands are used to apply on specified lines.

They are

1. Print

2. Quit

3. Line number

4. Modify

5. Files

6. Substitute

1. Print :

It is denoted by character p. It prints selected lines on standard output.

p (print) action shows all lines as well as selected lines , so selected lines will comes

twice to remove delicacy –n option is used with p(print action).

Example:

A special character ($) is used print last line of an input file.

• command p without any option displays all lines from particular file. $ sed -n p g1.txt

• select non contiguous group of lines of input file then command is as follow:

It will display 1 to 3 lines, 7 to 9 and last line from file g1.txt

� Selecting lines from anywhere: $ sed -n ‘9,11p’ f1

� Negating the action(!): $Sed –n ‘3,$!p’ f1 don’t print line 3 to

the end

2. Quit:

This command denoted by character q.

It uses a single address i.e. it does not allow range of address.

It quits after reading up to address lines.

example:

q without address prints first line.

LINE ADDRESSING :$ sed ‘3q’ f1 #quits after line number 3,here 3 is

 address and q(quit) is action

3. Line number:

It is denoted by equal (=).

It write line number of addressed line at the beginning of line.

It similar to -n option of grep. but here line numbers are written in separate line.

Example;

To print only line numbers -n option is used.

To print last line number $ is used with -n.

4. Modify:

There are different purpose of this command.

it allows you to insert, append, change or delete lines.

They do not modify just a part of a line that means they work on entire line.

This command has different options.

• Insert command (i) : it is denoted by character i. It is insert one or more lines

directly to the output before the address lines.

• append command (a) : it is denoted by character a.

It is similar to insert command except that it writes the text directly to the

output after the specified line.

• change command (c) : it is denoted by character c.

It replaces address/matched line with new text.

• delete command (d) : it is denoted by character d.

5. Files:

File command is used to read or write data from other file respectively.

There are two types of commands :

• read file : it is denoted by r fname. When a user wants to insert common

content of a file after specified line of an input file then this command is

useful.

It reads text from file fname and place its content after a specified line of

input file.

• Write file : it is denoted by w fname.

The write file command makes possible to write the selected lines in a

separate file.

To write selected lines of input file then command id as below:

Here in output it writes lines from names file to names.out file having pattern

'kavya'.

similarly if you want to write top 5 lines from input file to the output file

command is as below:

 $ sed '1,5w f4.txt' names.out

A user can create multiple output files that contain selected lines of input file.

 $ sed -n '/linux/w file <enter>

 > /unix/w ufile' f1

OR

 $ sed -ne '/linux/w file' -e '/unix/w ufile' f1

It will writes lines that contain pattern linux to a file and lines that contain

unix pattern from ufile to a f1.

6. Substitute commands: (s)

It is denoted by character S.

It scan lines for search pattern and substitution it with replacement string.

This command is similar to the search and replacement feature of text editor.

This feature provides us to add, delete or change text in one or more lines.

The format of the substitution command is as follow:

 [address or scanned_pattern] s/search_pattern/replace_string/[flags(s)]

 Here if address is not specified, the substitution will be performs for all lines containing

 first occurrence of search_pattern may be regular expression or literal string.

Both search_pattern and replace_string are delimited by slash(/).

The replace_string is a string that consist of either ordinary character or an atom or

meta-characters or combination of them.

Example: To replace 1st occurrences of "command" with '###' command is as below:

 Flag(g) : To replace all occurrence user need to use global (g) flag at the end of the

 instruction. This referred as global substitution.

 Example : $sed 's/for/###/g' test.txt

 Remembered Pattern :

� USING MULTIPLE INSTRUCTIONS(-e and –f)

o Sed -n –e ‘1,2p’ -e ‘7,9p’ -e ‘$p’ f1 # Giving address action from a file to

sed.

o $ cat instr.fil

1,2p

7,9p

$p

o $ sed -n -f instr.fil f1

o $ sed -n -f instr.fil1 -f instr.fil2 f1

o $ sed -n -e ‘/saxena/p’ -f instr.fill -f instr.fil2 emp?.lst

� CONTEXT ADDRESSING

o $ sed –n ‘/director/p’ f1

o $ sed -n ‘/dasgupta/,/saksena/p’ f1

o $ sed -n ‘1,/dasgupta/p’ f1

o $ sed -n ‘/[aA]gg*[ar][ar]wal/p’ f1

o $ sed -n '/dasgupta/p > /sales/p' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

o $ sed –n ‘/50…..$/p’ f1

� WRITING SELECTED LINES TO A FILE:

o W (write) command is used to write the selected lines to a separate file.

o Without –n selected lines will be written to the respective file; -n is used to suppress

printing of all lines on the terminal.

o $ sed -n ‘/director/w dlist’ f1

o $ sed –n ‘/director/w dlist

/manager/w mlist

/executive/w elist’ f1

o $ sed -n ‘1,55w f1

501,$w F2’ f.main

� TEXT EDITING

o Here, we have some editing commands available in sed’s action component.

o Inserting and changing lines (i , a, c)

� $ sed ‘1i\

> #include <stdio.h>\

> #include<unistd.h>

> ‘ foo.c> $$

� $ mv $$ foo.c; head –2 foo.c

#include <stdio.h>

#include<unistd.h>

� $ sed ‘a\

‘ emp.lst

TELNET VERSION:

� $ cat f3

nirzari pts/1 Aug 26 02:29 (192.168.0.64)

� $ sed '1i\

> hello user\

> hiii

> ' f3

hello user

hiii

nnn pts/1 Aug 26 02:29 (192.168.0.64)

� $ cat f3

nnn pts/1 Aug 26 02:29 (192.168.0.64)

� $ sed '1i\

hello user\

hiii

' f3>$$

� $ cat $$

hello user

hiii

nnn pts/1 Aug 26 02:29 (192.168.0.64)

� $ sed '1i\

> hiiii\

> be ok

> ' f2 >$$

� $ cat $$

hiiii

be ok

sales

� DELETING LINES(D)

o $ sed ‘/director/d’ f1 > olist -n option not to be used with d

TELNET VERSION:

� $ sed '/director/d' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

� $ cat f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

� $ sed -n ‘/director/!p’ f1 > olist

� $ sed -n '/director/!p' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

� DELETING BLANK LINES

� $ sed ‘/^[]*$/d’ f1 # a space and a tab inside []

� SUBSTITUTION (S)

o [ADDRESS]s / EXPRESSION1 / EXPRESSION2 / FLAGS

o $ cat > j3

a b c d

a b c

a b

a

o $ sed 's/a/A/' j3

A b c d

A b c

A b

A

o $ cat j3

a b c d

a b c

a b

a

o $ sed 's/a/A/g' j3

A b c d

A b c

A b

A

o $ sed ‘s/|/:/’ f1 | head -2

o $ sed ‘s/|/:/g’ f1 | head -2

TELNET VERSION:

o $ sed 's/|/:/' f1 | head -2

2233 : a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 : chanchal singhvi | director | sales | 13/9/87 | 6700

o $ sed 's/|/:/g' f1 | head -2

2233 : a.k. shukla : g.m : sales : 12/12/52 : 6000

1006 : chanchal singhvi : director : sales : 13/9/87 : 6700

o $ sed ‘1,3s/|/:/g’ f1 first 3 lines only

o $ sed ‘1,5s/director/member /’ f1

o $ sed ‘s/[Aa]gg*[ar][ar]wal/Agarwal/g’ f1

o $ sed ‘s/^/2/’ f1| head –n 1

o $ sed ‘s/$/.00/’ f1 | head –n 1

TELNET VERSION:

o $ sed 's/^/2/' f1

22233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

21006 | chanchal singhvi | director | sales | 13/9/87 | 6700

21265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

22476 | anil Agarwal | manager | sales | 12/7/56 | 5000

22567 | anju agarwal | accountant | purchase | 12/7/76 |2000

o $ cat f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

o $ sed 's/$/.00/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000.00

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700.00

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600.00

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000.00

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000.00

� PERFORMING MULTIPLE SUBSTITUTION

o $ sed ‘s/<I>//g

> s///g

> s/<U>//g’ form.html

o $ sed ‘s/<I>/g

> s//g’ form.html

� COMPRESSING MULTIPLE SPACES:

o $ Sed ‘S/ *|/|/g’ emp.lst | tee empn.lst | head –n 3

� THE REMEMBERED PATTERN(//)

1) $ sed ‘s/director/member/’ f1

2) $ sed ‘ /director/s//member/’ f1

o $ sed '/director/s//member/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | member | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

o $ sed ‘ /director/s/director/member/’ f1

o $ sed ‘s/|//g’ f1 removes every | from file

TELNET VERSION:

o $ sed 's/|//g' f1

2233 a.k. shukla g.m sales 12/12/52 6000

1006 chanchal singhvi director sales 13/9/87 6700

1265 s.n. dasgupta manager sales 12/8/67 5600

2476 anil Agarwal manager sales 12/7/56 5000

2567 anju agarwal accountant purchase 12/7/76 2000

o $ sed –n ‘ /marketing/s/director/member /p’ f1

NOTE: The significance of // depends on its position in the instruction. If it is in the source

string, it implies that the scanned pattern is stored there. If the target string is //, it means that

the source pattern is to be removed.

� BASIC REGULAR EXPRESSION REVISITED:

o 3 types of expressions:

1) The Repeated Pattern � This uses a single, &, to make the entire source pattern

appear at the destination also.

2) The Interval Regular Expression (IRE) � This expression uses the characters { and }

with a single pair of numbers between them.

3) The Tagged Regular Expression (TRE) � This expression groups pattern with (and)

and represents them at the destination with numbered tags.

THE REPEATED PATTERN (&)

o $ sed ‘s/director/executive director/’ f1

o $ sed ‘s/director/executive &/’ f1

o $sed ‘/director/s//executive &/’ f1

TELNET VERSION:

o $ sed 's/director/executive director/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | executive director | sales |13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

o $ sed 's/director/executive &/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | executive director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

o $ sed '/director/s//executive &/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | executive director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | manager | sales | 12/8/67 | 5600

2476 | anil Agarwal | manager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76|2000

INTERVAL REGULAR EXPRESSION (IRE)

1) ch\{m\} ���� The meta-character ch can occur m times

2) ch\{m,n\} ���� Here, ch can occur between m and n times

3) ch\{m,\} ���� Here, ch can occur at least m times

o These are used to mention no of character/character set reputation info. Note that

interval regular expression and extended reg require -E option with grep

o Note: In order to use this set of regular expressions you have to us -E with grep

command and -r option with sed commands.

o {n} ���� n occurrence of previous character

o {n,m} ���� n to m times occurrence of previous character

o {m, } ���� m or more occurrence of previous character.

TELNET VERSION:

o $ ls -l | grep -E 't{3}'

-rw-rw-r-- 1 nirzari nirzari 5 Sep 3 06:51 ttt

o $ ls -l | grep 't\{3\}'

-rw-rw-r-- 1 nirzari nirzari 5 Sep 3 06:51 ttt

o $ ls -l | grep -E 't\{3\}'

o $ ls -l | grep 't{3}'

Example 1:

Find all the file names which contain “t” and t repeats for 3 times consecutively.

$ ls -l | grep -E ‘t{3}’

-E option is used to extend regexp understanding for grep.

Example 2:

Find all the file names which contain l letter in filename with 1 occurrence to 3

occurrences consecutively.

o $ ls -l | grep -E ‘l{1,3}’

o $ ls | grep -E 'l{1,3}'

file2

l1

ll

olist

o $ ls | grep -E l{1,3}

grep: l3: No such file or directory

Example 3:

Find all the file names which contains k letter 5 and more in a file name.

 $ ls -l | grep -E 'k{5,}'

This is bit tricky, let me explain this. Actually we had given a range i.e 5 to infinity (Just

given only comma after 5).

1) # to select lines that contains mobile numbers, from file teledir.txt

 $ grep ‘[0-9]\{10\}’ teledir.txt

2) To have list of file that have the write bit set for either for group or others:

 $ ls –l | sed –n ‘/^.\{5,8\}w/p’

3) $ sed –n ‘/.\{101,\}/p’ f1 # line length at least 101

4) $ grep ‘^.\{101,150\}$’ f2 # line length between 101 and 150

THE TAGGED REGULAR EXPRESSION (TRE)

o # the name like amit Sharma will be substituted as Sharma amit

o $ sed ‘s/\([a-z]*\) *\([a-z]*\)/\2, \1/’ teledir.txt | sort

o $ sed 's/\(m\)\(a\)/\2\1/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | amnager | sales | 12/8/67 | 5600

2476 | anil Agarwal | amnager | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

o $ sed 's/\(m\)\([a-z]*\)/\2\1/' f1

2233 | a.k. shukla | g.m | sales | 12/12/52 | 6000

1006 | chanchal singhvi | director | sales | 13/9/87 | 6700

1265 | s.n. dasgupta | anagerm | sales | 12/8/67 | 5600

2476 | anil Agarwal | anagerm | sales | 12/7/56 | 5000

2567 | anju agarwal | accountant | purchase | 12/7/76 |2000

awk utility:
• Awk is a scripting language used for manipulating data and generating reports.

• The awk command programming language requires no compiling, and allows the user to

use variables, numeric functions, string functions, and logical operators.

• Awk is a utility that enables a programmer to write tiny but effective programs in the

form of statements that define text patterns that are to be searched for in each line of a

document and the action that is to be taken when a match is found within a line.

• Awk is mostly used for pattern scanning and processing. It searches one or more files to

see if they contain lines that matches with the specified patterns and then performs the

associated actions.

• Awk is abbreviated from the names of the developers – Aho, Weinberger, and

Kernighan.

1. AWK Operations:

(a) Scans a file line by line

(b) Splits each input line into fields

(c) Compares input line/fields to pattern

(d) Performs action(s) on matched lines

2. Useful For:

(a) Transform data files

(b) Produce formatted reports

3. Programming Constructs:

(a) Format output lines

(b) Arithmetic and string operations

(c) Conditionals and loops

Typical Uses of AWK

• Text processing,

• Producing formatted text reports,

• Performing arithmetic operations,

• Performing string operations, and many more.

• Awk views a text file as records and fields.

• Like common programming language, Awk has variables, conditionals and loop.

• Awk has arithmetic and string operators.

• Awk can generate formatted reports

Example :

$cat > employee.txt

ajay manager account 45000

sunil clerk account 25000

varun manager sales 50000

amit manager account 47000

tarun peon sales 15000

deepak clerk sales 23000

sunil peon sales 13000

satvik director purchase 80000

1. Default behavior of Awk : By default Awk prints every line of data from the specified file.

$ awk '{print}' employee.txt

Output:

ajay manager account 45000

sunil clerk account 25000

varun manager sales 50000

amit manager account 47000

tarun peon sales 15000

deepak clerk sales 23000

sunil peon sales 13000

satvik director purchase 80000

2. Print the lines which matches with the given pattern.

$ awk '/manager/ {print}' employee.txt

3. Spliting a Line Into Fields : For each record i.e line, the awk command splits the record
delimited by whitespace character by default and stores it in the $n variables.

$ awk '{print $1,$4}' employee.txt

Built In Variables In Awk
There are some system variables defined by awk.

All system variables are in capital letters and a user can change the value of system variables if

desired.

The following are the system variables:

1.FS variable- Field Separator variable

2.OFS-The Output Field Separators.

3.RS-Record Separator variable.

4.ORS- A Output Record variable

5.NR -The Number of Records.

$ awk '{print NR,$0}' employee.txt

6.NF -Number of Field in a Record
Use of NF built-in variables (Display Last Field)

$ awk '{print $1,$NF}' employee.txt

Output:

ajay 45000

sunil 25000

varun 50000

amit 47000

tarun 15000

deepak 23000

sunil 13000

satvik 80000

In the above example $1 represents Name and $NF represents Salary. We can get the
Salary using $NF , where $NF represents last field.

7.FILENAME-Name of the Current Input File

8.FNR -Number of Records Relative to the Current Input File

Another use of NR built-in variables (Display Line From 3 to 6)

$ awk 'NR==3, NR==6 {print NR,$0}' employee.txt

Output:

3 varun manager sales 50000

4 amit manager account 47000

5 tarun peon sales 15000

6 deepak clerk sales 23000

More Examples

For the given text file:

$cat > geeksforgeeks.txt

A B C

Tarun A12 1

Man B6 2

Praveen M42 3

1) To print the first item along with the row number(NR) separated with ” – “ from each line in
geeksforgeeks.txt:

$ awk '{print NR "- " $1 }' geeksforgeeks.txt

1 - Tarun

2 – Manav

3 - Praveen

2) To return the second row/item from geeksforgeeks.txt:

$ awk '{print $2}' geeksforgeeks.txt

A12

B6

M42

3) To print any non empty line if present

$ awk 'NF > 0' geeksforgeeks.txt

0

5) To count the lines in a file:

$ awk 'END { print NR }' geeksforgeeks.txt

3

6) Printing lines with more than 10 characters:

$ awk 'length($0) > 10' geeksforgeeks.txt

Tarun A12 1

Praveen M42 3

Awk Example 6. Print the list of employees in Technology
department
Now department name is available as a fourth field, so need to check if $4 matches with the string
“Technology”, if yes print the line.

$ awk '$4 ~/Technology/' employee.txt

200 Jason Developer Technology $5,500
300 Sanjay Sysadmin Technology $7,000
500 Randy DBA Technology $6,000

Operator ~ is for comparing with the regular expressions. If it matches the default action i.e print whole line
will be performed.

Awk Example 7. Print number of employees in Technology
department
The below example, checks if the department is Technology, if it is yes, in the Action, just increment the count
variable, which was initialized with zero in the BEGIN section.

$ awk 'BEGIN { count=0;}

$4 ~ /Technology/ { count++; }
END { print "Number of employees in Technology Dept =",count;}' employee.txt
Number of employees in Tehcnology Dept = 3

AWK workflow
To become an expert AWK programmer, you need to know its internals.

AWK follows a simple workflow − Read, Execute, and Repeat.

The following diagram depicts the workflow of AWK − figure

Read : AWK reads a line from the input stream (file, pipe, or stdin) and stores it in memory.

Execute: All AWK commands are applied sequentially on the input. By default AWK execute

commands on every line. We can restrict this by providing patterns.

Repeat: This process repeats until the file reaches its end.

Structure of awk:

Syntax: awk option 'instruction' filename(s)

Instruction part of awk program has 3 sections.

[1] BEGIN [2] Processing section [3] END section

BEGIN { action }

 selection criteria {action}

END { action}'[filename(S)]

Output statement in awk

Output statement are used for display purpose.

The print and printf are generate output.

1. print:

The print statement does output with simple, standardized formatting.

You specify only the strings or numbers to be printed, in a list separated by commas.

They are output, separated by single spaces, followed by a newline. The statement looks like

this: print item1, item2, ...

The entire list of items may optionally be enclosed in parentheses.

 The parentheses are necessary if any of the item expressions uses the `>' relational operator;

otherwise it could be confused with a redirection.

The items to be printed can be constant strings or numbers, fields of the current record (such

as $1), variables, or any awk expressions.

Numeric values are converted to strings, and then printed.

Example:
Consider the following text file as the input file for all cases below.

$cat > employee.txt

ajay manager account 45000

sunil clerk account 25000

varun manager sales 50000

amit manager account 47000

tarun peon sales 15000

deepak clerk sales 23000

sunil peon sales 13000

satvik director purchase 80000

1. Default behavior of Awk : By default Awk prints every line of data from the specified file.

$ awk '{print}' employee.txt

Output:

ajay manager account 45000

sunil clerk account 25000

varun manager sales 50000

amit manager account 47000

tarun peon sales 15000

deepak clerk sales 23000

sunil peon sales 13000

satvik director purchase 80000

In the above example, no pattern is given. So the actions are applicable to all the lines. Action

print without any argument prints the whole line by default, so it prints all the lines of the file

without failure.

2. Print the lines which matches with the given pattern.

$ awk '/manager/ {print}' employee.txt

Output:

ajay manager account 45000

varun manager sales 50000

amit manager account 47000

In the above example, the awk command prints all the line which matches with the ‘manager’.

3. Spliting a Line Into Fields : For each record i.e line, the awk command splits the record

delimited by whitespace character by default and stores it in the $n variables. If the line has 4

words, it will be stored in $1, $2, $3 and $4 respectively. Also, $0 represents the whole line.

$ awk '{print $1,$4}' employee.txt

Output:

ajay 45000

sunil 25000

varun 50000

amit 47000

tarun 15000

deepak 23000

sunil 13000

satvik 80000

2. printf:

printf is similar to AWK print statement but the advantage is that it can print with formatting

the output in a desired manner.

So before learning printf command I suggest you to learn about print command and then come

to this printf statement.

Syntax:

awk '{printf "format", Arguments}' filename

For example you want to print decimal values of column 3 then the example will be.

awk '{printf "%d", $3}' example.txt

Printf can do two things which AWK print command can’t

1)Defining type of Data.

2)Padding between columns.

AWK PRINTF SUPPORTED DATA TYPES

The printf can be useful when specifying data type such as integer, decimal, octal etc. Below are

the list of some data types which are available in AWK.

%i or d --Decimal%o --Octal

%x --hex

%c --ASCII number character

%s --String

%f --floating number

Note: Make sure that you pass exact data types when using corresponding formats as shown

below. If you pass a string to a decimal formatting, it will print just zero instead of that string.

Lets start with some examples. for this post our test file contents are

Jones 21 78 84 77

Gondrol 23 56 58 45

RinRao 25 21 38 37

Edwin 25 87 97 95

Dayan 24 55 30 47

Example 1: Print first column values from db.txt file.

awk '{printf "%sn", $1}' db.txt

Output:

Jones

Gondrol

RinRao

Edwin

Dayan

Note: printf will not have default new line char, so you have to include tat when ever you

execute printf command as shown above.

Example 2: Try printing a string with decimal format and see the difference.

awk '{printf "%dn", $1}' db.txt

Output:

0

0

0

0

0

-F option :
The default field separator can be changed by option -F.

In such cases, after -F option we can write a single character constant to indicate the field

separator.

This character should be enclosed within marks if it is having special meaning like meta-

character.

for rest data photos from mobile

AWK operators:
Like other programming languages, AWK also provides a large set of operators

There are two types of operators in Awk.

1. Unary Operator – Operator which accepts single operand is called unary operator.

2. Binary Operator – Operator which accepts more than one operand is called binary

 operator.

Few Operators are:

1. Arithmetic operators

2. Assignment Operator

3. Relational Operator

4. Logical Operator

5. Regular expression matching operator

1. Arithmetic operators

The following operators are used for performing arithmetic calculations.

OperatorDescription

+

Addition

Ex:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a + b) = ", (a + b) }'

On executing this code, you get the following result −Output

(a + b) = 70

–

Subtraction

Example

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a - b) = ", (a - b) }'

On executing this code, you get the following result −

Output

(a - b) = 30

*
Multiplication

Example

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a * b) = ", (a * b) }'

On executing this code, you get the following result −

Output

(a * b) = 1000

/

Division

Example

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a / b) = ", (a / b) }'

On executing this code, you get the following result −

Output

(a / b) = 2.5

%

Modulo Division

Example

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a % b) = ", (a % b) }'

On executing this code, you get the following result −

Output

(a % b) = 10

^ or ** exponentiation

2. Assignment Operator

Awk has Assignment operator and Shortcut assignment operator as listed below.

OperatorDescription

=

Assignment

Example

[jerry]$ awk 'BEGIN { name = "Jerry"; print "My name is", name }'

On executing this code, you get the following result −

Output

My name is Jerry

+=

Shortcut addition assignment

Example

[jerry]$ awk 'BEGIN { cnt = 10; cnt += 10; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 20

In the above example, the first statement assigns value 10 to the variable cnt. In

the next statement, the shorthand operator increments its value by 10.

-=

Shortcut subtraction assignment

Example

[jerry]$ awk 'BEGIN { cnt = 100; cnt -= 10; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 90

In the above example, the first statement assigns value 100 to the variable cnt. In

the next statement, the shorthand operator decrements its value by 10.

*=
Shortcut multiplication assignment

Example

[jerry]$ awk 'BEGIN { cnt = 10; cnt *= 10; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 100

In the above example, the first statement assigns value 10 to the variable cnt. In

the next statement, the shorthand operator multiplies its value by 10.

/=

Shortcut division assignment

Example

[jerry]$ awk 'BEGIN { cnt = 100; cnt /= 5; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 20

In the above example, the first statement assigns value 100 to the variable cnt. In

the next statement, the shorthand operator divides it by 5.

%=

Shortcut modulo division assignment

Example

[jerry]$ awk 'BEGIN { cnt = 100; cnt %= 8; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 4

^=

Shorthand Exponential

Example

[jerry]$ awk 'BEGIN { cnt = 2; cnt ^= 4; print "Counter =", cnt }'

On executing this code, you get the following result −

Output

Counter = 16

The above example raises the value of cnt by 4.

3. Relational Operator

awk has the following list of conditional operators which can be used with control

structures and looping statement which will be covered in the coming article.

OperatorDescription

>

Is greater than

It is represented by >. It returns true if the left-side operand is greater than the right-side

operand, otherwise it returns false.

Example

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (b > a) print "b > a" }'

On executing the above code, you get the following result −

Output

b > a

>=

Is greater than or equal to

It is represented by >=. It returns true if the left-side operand is greater than or equal to

the right-side operand; otherwise it returns false.

b >= a

<
Is less than

It is represented by <. It returns true if the left-side operand is less than the right-side

operand; otherwise it returns false.

Example

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (a < b) print "a < b" }'

On executing this code, you get the following result −

Output

a < b

<=

Is less than or equal to

It is represented by <=. It returns true if the left-side operand is less than or equal to the

right-side operand; otherwise it returns false.

Example

[jerry]$ awk 'BEGIN { a = 10; b = 10; if (a <= b) print "a <= b" }'

On executing this code, you get the following result −

Output

a <= b

<= Is less than or equal to

==

Is equal to

It is represented by ==. It returns true if both operands are equal, otherwise it returns

false. The following example demonstrates this −

Example

awk 'BEGIN { a = 10; b = 10; if (a == b) print "a == b" }'

On executing this code, you get the following result −

Output

a == b

!=

Is not equal to

It is represented by !=. It returns true if both operands are unequal, otherwise it returns

false.

Example

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (a != b) print "a != b" }'

On executing this code, you get the following result −

Output

a != b

4. Logical Operator

OperatorDescription

&&

Both the conditional expression should be true

It is represented by &&. Its syntax is as follows −

Syntax

expr1 && expr2

It evaluates to true if both expr1 and expr2 evaluate to true; otherwise it returns false.

expr2 is evaluated if and only if expr1 evaluates to true. For instance, the following

example checks whether the given single digit number is in octal format or not.

Example

[jerry]$ awk 'BEGIN {

 num = 5; if (num >= 0 && num <= 7) printf "%d is in octal format\n", num

}'

On executing this code, you get the following result −

Output

5 is in octal format

||

Any one of the conditional expression should be true

It is represented by ||. The syntax of Logical OR is −

Syntax

expr1 || expr2

It evaluates to true if either expr1 or expr2 evaluates to true; otherwise it returns false.

expr2 is evaluated if and only if expr1 evaluates to false. The following example

demonstrates this −

Example

[jerry]$ awk 'BEGIN {

 ch = "\n"; if (ch == " " || ch == "\t" || ch == "\n")

 print "Current character is whitespace."

}'

On executing this code, you get the following result −

Output

Current character is whitespace

!

Logical NOT

It is represented by exclamation mark (!). The following example demonstrates this −

Example

! expr1

It returns the logical compliment of expr1. If expr1 evaluates to true, it returns 0;

otherwise it returns 1. For instance, the following example checks whether a string is

empty or not.

Example

[jerry]$ awk 'BEGIN { name = ""; if (! length(name)) print "name is empty string." }'

On executing this code, you get the following result −

Output

name is empty string.

5. Regular expression matching operator

 Awk Regular Expression Operator

OperatorDescription

~

Match operator

It is represented as ~. It looks for a field that contains the match string. For instance, the following

example prints the lines that contain the pattern 9.

Example

[jerry]$ awk '$0 ~ 9' marks.txt

On executing this code, you get the following result −

Output

2) Rahul Maths 90

5) Hari History 89

!~

No Match operator

It is represented as !~. It looks for a field that does not contain the match string. For instance, the

following example prints the lines that do not contain the pattern 9.

Example

[jerry]$ awk '$0 !~ 9' marks.txt

On executing this code, you get the following result −

Output

1) Amit Physics 80

3) Shyam Biology 87

4) Kedar English 85

AWK: expression, variables and constants
AWK provides several built-in variables. They play an important role while writing AWK scripts.

Standard AWK variables

ARGC :It implies the number of arguments provided at the command line.

Example

[jerry]$ awk 'BEGIN {print "Arguments =", ARGC}' One Two Three Four

On executing this code, you get the following result −Output

Arguments = 5

But why AWK shows 5 when you passed only 4 arguments? Just check the following example

to clear your doubt.

ARGV: It is an array that stores the command-line arguments. The array's valid index ranges

from 0 to ARGC-1.

Example

[jerry]$ awk 'BEGIN {

 for (i = 0; i < ARGC - 1; ++i) {

 printf "ARGV[%d] = %s\n", i, ARGV[i]

 }

}' one two three four

On executing this code, you get the following result −

Output

ARGV[0] = awk

ARGV[1] = one

ARGV[2] = two

ARGV[3] = three

FILENAME: It represents the current file name.

Example

[jerry]$ awk 'END {print FILENAME}' marks.txt

On executing this code, you get the following result −

Output

marks.txt

Please note that FILENAME is undefined in the BEGIN block.

FS :It represents the (input) field separator and its default value is space. You can also change this by

using -F command line option.

Example

[jerry]$ awk 'BEGIN {print "FS = " FS}' | cat -vte

On executing this code, you get the following result −

Output

FS = $

NF: It represents the number of fields in the current record. For instance, the following example

prints only those lines that contain more than two fields.

Example

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NF > 2'

On executing this code, you get the following result −

Output

One Two Three

One Two Three Four

NR:It represents the number of the current record. For instance, the following example prints the

record if the current record number is less than three.

Example

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NR < 3'

On executing this code, you get the following result −

Output

One Two

One Two Three

FNR: It is similar to NR, but relative to the current file. It is useful when AWK is operating on multiple

files. Value of FNR resets with new file.

OFS: It represents the output field separator and its default value is space.

Example

[jerry]$ awk 'BEGIN {print "OFS = " OFS}' | cat -vte

On executing this code, you get the following result −

Output

OFS = $

ORS: It represents the output record separator and its default value is newline.

Example

[jerry]$ awk 'BEGIN {print "ORS = " ORS}' | cat -vte

On executing the above code, you get the following result −

Output

ORS = $

$

RS: It represents (input) record separator and its default value is newline.

Example

[jerry]$ awk 'BEGIN {print "RS = " RS}' | cat -vte

On executing this code, you get the following result −

Output

RS = $

$

